리퍼비시 계측기

리퍼비시 계측기

TLA6203 – P6810(3)

  • ModelTLA6203
  • MakerTektronix
  • DescriptionLogic Analyzer
  • OptionP6810(3)
  • Rental문의요망
  • Stock문의요망

Features & Benefits

  • Comprehensive Set of Signal Integrity Tools that Allow You to Quickly Isolate, Identify, and Debug Complex Signal Integrity Issues
    • Glitch Trigger and Storage – Allows you to trigger on and highlight potential signal integrity problems. Not only can the TLA6000 Series trigger on the problem, but by highlighting suspected problems in red, you will be able to easily determine which signals you need to investigate further
    • iCapture – Route the suspected signal to the analog output of the TLA6000 using the exclusive Tektronix iCapture feature. This eliminates the need to double-probe with an oscilloscope probe, reducing time to debug
    • iView – Time-correlated view of both logic analyzer and oscilloscope data to trace the SI problem across the digital and analog domain
  • Performance and Ease of Use to Debug, Validate, and Optimize Digital Systems
    • 125 ps Resolution MagniVu™ Acquisition to Accurately See Signal Relationships in Your System
    • State Speed – Sample your fastest synchronous buses with clock rates up to 800 MHz and data rates up to 1.25 Gb/s
    • 15 in. Display, with Optional Touch Screen to See More of Your Data and Navigate Efficiently through Your Data
    • 3 Models with 68/102/136 Channels and Up to 128 Mb Record Length offer Flexible Solutions to Fit Any Budget
    • Drag-and-Drop Triggering – Simply drag any one of eight different trigger types from a table onto the waveform and the TLA will automatically set up the trigger conditions. Eliminates errors, improves repeatability, and saves time
    • Drag-and-Drop Measurements – Simply drag an icon from the measurement toolbar and drop it on your signal of interest and get a table of results. Saves time, removes complexity, and reduces measurement uncertainty
  • Analysis Tools for Debugging and Validating Today’s Digital Systems
    • FPGA
    • DDR2
    • A Broad Selection of Microprocessor and Bus Support
    • MIPI CSI and DSI Debug


  • Digital Hardware Validation and Debug
  • Monitoring, Measurement, and Optimization of Digital Hardware Performance
  • Embedded Software Integration, Debug, and Verification

Efficiently Debug and Validate Your Digital System at a Price You Will Like!

The affordable TLA6000 Series of logic analyzers offer the performance needed to debug, validate, and optimize the functionality of your digital system. The TLA6000 Series also provides a comprehensive set of signal integrity debug tools that allow you quickly isolate, identify, and characterize elusive and hard-to-find problems. Add a broad range of support for today’s applications, and you have the ideal tool to help you meet all of the debug challenges of today’s digital designs.

The TLA6000 Series allows you to effectively validate and debug the functionality of your digital designs:

  • Use the patented 8 GHz MagniVu technology to accurately measure timing relationships. The single, integrated acquisition architecture of the TLA6000 Series eliminates the timing skew problems inherent in other logic analyzer architectures
  • Capture on buses with clock rates up to 800 MHz and data rates up to 1.25 Gb/s
  • Buy the capability you need now and upgrade as your measurement needs grow
  • Quickly isolate events through a simple and intuitive drag-and-drop trigger setup
  • Easily summarize your design’s performance with sophisticated drag-and-drop measurements such as frequency, period, pulse width, duty cycle, and edge count
  • View data in a variety of time-correlated formats including waveform, listing, graph, disassembly, source code, or compare

Find Tough Signal Integrity Problems

Today’s logic analyzers not only need to help troubleshoot functional issues in your design, but also need to help find signal integrity problems caused by crosstalk, termination mismatches, ground bounce, and other issues. To help debug these problems, the TLA6000 Series includes a comprehensive suite of signal debug tools.

These tools allow you to:

  • Use glitch trigger to monitor selected signals in your design and trigger when a signal integrity problem is found on any one of these signals
  • Automatically tag any found signal integrity problems, allowing you to quickly identify the signals of interest
  • Gain more insight into the problem using the exclusive iCapture functionality to view both digital and analog data through a single probe
  • Use iView to see time-correlated digital and analog displays of your data, letting you track the signal integrity problem across both analog and digital domains

DDR2 Protocol Debug and Validation

DDR2 memory systems are used in many of today’s embedded system designs – commonly implemented as a bus on the microprocessor or as a block in an FPGA. The complexity of the DDR2 protocol and the number of command/data/address signals make it difficult to both visualize the operation of the bus and to isolate any potential problems. In addition, designers need to ensure that signal timing and interfaces comply with JEDEC standards. The TLA6000 DDR2x8 and DDR2x16 options provide a complete, easy-to-use DDR2 test solution for embedded DDR2 designs up to DDR2-800 using x4, x8, and x16 data-width DDR2 devices.

These options consist of set of tools designed to provide visibility to all address, data, and control signals. The bundle includes:


Memory Chip Interposer.


Protocol Decode Software.


DDR Analysis.

  • Memory chip interposers that provide a convenient way of probing embedded DDR memory systems and eliminates the need to design in probe access points. These memory chip interposers work with the unique iCapture™ Analog Mux feature of the TLA6000 to provide a single probing solution for both the logic analyzer and oscilloscope, saving time and minimizing setup complexity
  • Protocol decode software that shows all of the DDR2 transactions as well as providing triggering on DDR2 events
  • Sample-point analysis software that automates the process of correctly configuring the TLA6000 Series to accurately sample the DDR2 signals
  • Protocol violation software that finds and reports violations of the JEDEC-defined DDR2 protocol

TLA6000 Selection Guide









High-speed Timing

8 GHz (125 ps) with 16 Kb record length

Maximum Timing Sample Rate (Quarter/Half/Full channel)

2 GHz / 1 GHz / 500 MHz

Maximum State Clock Rate (Quarter/Half/Full channel)

450 MHz / 450 MHz / 235 MHz (standard)

625 MHz / 800 MHz / 450 MHz (with Option 45)

Maximum State Data Rate (Quarter/Half/Full channel)

900 Mb/s / 470 Mb/s / 235 Mb/s (standard)

1.25 Gb/s / 900 Mb/s / 450 Mb/s (with Option 45)

Maximum Record Length

2 Mb (standard)

8 Mb with Option 1S

32 Mb with Option 2S

128 Mb with Option 3S

Analog Mux

4 fixed channels (standard)

Any signal (user selectable) may be routed to 4 output BNCs with Option AM

Probing Options

P6810 General-purpose probe with Option 1P – supports single-ended and differential signals

Mictor connections with Option 2P

P6960 D-Max probe with Option 3P




Number of Channels (All channels are acquired including clocks)


68 channels (4 are clock channels)


102 channels (4 are clock and 2 are qualifier channels)


136 channels (4 are clock and 4 are qualifier channels)

   Channel grouping

No limit to number of groups or number of channels per group (all channels can be reused in multiple groups)

Time Stamp

51 bits at 125 ps resolution (3.25 days duration)

Clocking/Acquisition Modes

Asynchronous/Synchronous 8 GHz MagniVu high-speed timing is available simultaneous with all modes

Expansion Capability

The TLA6000 Series can be used as either a master or expansion mainframe in systems consisting of up to 8 TLA6000/TLA7000 instruments. A TL708EX Instrument Hub and Expander is required when connecting 3-8 instruments together using TekLink™ cables

PC Characteristics



Operating System

Microsoft® Windows® XP Professional and Multilingual User Interface Pack


2.2 GHz Intel Core 2 Duo T7500


Intel® 965GME


1 GB DDR2 expandable to 2 GB DDR memory


Line In, Line Out, and Mic Out connectors

Removable Hard Drive

3.5 in., ≥80 GB Serial ATA, 7200 RPM

Optical Drive

Internal 4.7 GB DVD±R/RW

External Display Port Type

One (1) DVI-I (primary – digital and analog) connector and one (1) VGA connector

External Display Resolution

Up to 1600×1200 noninterlaced at 32-bit color, each for both primary and secondary displays

Network Port

Two (2) 10/100/1000 LAN with RJ-45 connector

USB 2.0 Port

Seven (7); three (3) in front and four (4) in rear

Integral Controls



Front-panel Display

Size: 15 in. (38.1 cm) diagonal

Type: Active-matrix color TFT LCD with backlight

Resolution: 1024×768

Simultaneous Display Capability

Both the front-panel and one external display can be used simultaneously at 1024×768 resolution

Front Panel

General-purpose knob with dedicated hotkeys and knobs for horizontal and vertical scaling and scrolling

Touch Screen

Available with Option 18

Integrated View (iView™) Capability



TLA Mainframe Configuration Requirements

GPIB-iView (Opt. 1C) requires TLA Application Software V5.0 or greater


USB-iView (Opt. 2C) requires TLA Application Software V5.8 or greater

Number of Tektronix Oscilloscopes that can be Connected to a TLA System


External Oscilloscopes Supported

More than 100. For a complete listing of currently supported oscilloscopes, please visit our website http://www.tektronix.com/iview

TLA Connections

USB, Trigger In, Trigger Out, Clock Out

Oscilloscope Connections


   (Opt. 1C)

GPIB, Trigger In, Trigger Out, Clock In (when available)


   (Opt. 2C)

USB Device Port, Trigger In, Trigger Out


iView™ external oscilloscope wizard automates setup

Data Correlation

After oscilloscope acquisition is complete, the data is automatically transferred to the TLA and time correlated with the TLA acquisition data


The oscilloscope and TLA data is automatically deskewed and time correlated when using the iView™ external oscilloscope cable

GPIB-iView™ (Opt. 2C) External Oscilloscope Cable Length

2 m (6.6 ft.)

USB-iView (Opt. 2C) External Oscilloscope Cable Length

2 m (6 ft.)

Symbolic Support



Number of Symbols/Ranges

Unlimited (limited only by amount of virtual memory available on TLA)

Object File Formats Supported

IEEE695, OMF 51, OMF 86, OMF 166, OMF 286, OMF 386, COFF, Elf/Dwarf 1 and 2, Elf/Stabs, TSF (If your software development tools do not generate output in one of the above formats, TSF, or the Tektronix symbol file, a generic ASCII file format is supported. The generic ASCII file format is documented in the TLA User Manual). If a format is not listed, please contact your local Tektronix representative

External Instrumentation Interfaces



System Trigger Output

Asserted whenever a system trigger occurs (TTL-compatible output, back-terminated into 50 Ω)

System Trigger Input

Forces a system trigger (triggers all modules) when asserted (adjustable threshold between 0.5 V and 1.5 V, edge sensitive, falling-edge latched)

External Signal Output

Can be used to drive external circuitry from a module’s trigger mechanism (TTL-compatible output, back-terminated into 50 Ω)

External Signal Input

Can be used to provide an external signal to arm or trigger any or all modules (adjustable threshold between 0.5 V and 1.5 V, level sensitive)




Voltage Range/Frequency

90-250 V AC at 45-66 Hz, 100-132 V AC at 360-440 Hz

Input Current

7 A maximum at 90 V AC (70 A surge)

Power Consumption

750 W maximum





Operating: +5 °C to +45 °C

Nonoperating: –20 °C to +60 °C


20% to 80%

Operating: ≤30 °C; 80% relative humidity (29 °C maximum wet-bulb temperature)

Nonoperating: 8% to 80% (29 °C maximum wet-bulb temperature)


Operating: –1,000 ft. to 10,000 ft. (–305 meters to 3,050 meters)


UL3111-1, CSA1010.1, EN61010-1, IEC61010-1

Physical Characteristics



















Shipping (Typical)



Input Characteristics (with P6800 or P6900 Series probes)



Capacitive Loading

0.5 pF clock/data (P6900 Series)

<0.7 pF clock/data (P6800 Series)

(1.0 pF for P6810 in group configuration)

Threshold Selection Range

From –2.0 V to +4.5 V in 5 mV increments

Threshold presets include TTL (1.5 V), CMOS (1.65 V), ECL (–1.3 V), PECL (3.7 V), LVPECL (2.0 V), LVCMOS 1.5 V (0.75 V), LVCMOS 1.8 V (0.9 V), LVCMOS 2.5 V (1.25 V), LVCMOS 3.3 V (1.65 V), LVDS (0 V), and user defined

Threshold Selection Channel Granularity

Separate selection for each of the clock/qualifier channels and one per group of 16 data channels for each 34-channel probe

Threshold Accuracy (including probe)

±(35 mV + 1%)

Input Voltage Range


–2.5 V to 5.0 V


±15 V

Minimum Input Signal Swing

300 mV (single ended)

MAX – VMIN > 150 mV (differential)

Input Signal Minimum Slew Rate

200 mV/ns typical

Probe P6810 (3)





    문의 및 요청내용 *

    개인정보 수집, 이용 및 처리방침

    - 수집항목: 이름, 연락처, 이메일, 주소
    - 수집/이용목적: 견적요청에 대한 접수 및 결과 회신
    - 이용기간: 원칙적으로 개인정보 수집 및 이용목적이 달성된 후에는 해당 정보를 지체 없이 파기합니다.
    단, 관계법령의 규정에 의하여 보전할 필요가 있는 경우 일정기간 동안 개인정보를 보관할 수 있습니다.

    그 밖의 사항은 (주)누비콤 개인정보취급방침을 준수하며 견적서를 요청하면 개인정보처리방침에 동의하는 것으로 간주됩니다.

    • 개인정보처리방침에 동의합니다.